

102

e-Powertrain Engineer Kompetenzen

1 INHALT

1	Inha	lt	2
	1.1	Ziele	4
	1.2	Zweck des Dokuments	4
	1.3	Geltungsbereich	4
2	Euro	SPI Skills DefinitionsModell	5
3	Skill	s Definition for the Job Role "e-Powertrain Engineer"	7
	3.1	The Skills Descriptions	7
	3.2	Unit ECEPE.U1 Einführung	8
	3.2.	1 Unit ECEPE.U1 – Element 1: Motivation und Herausforderungen	8
	3.2.	2 Unit ECEPE.U1 – Element 2: Produktlebenszyklus (Einführung)	9
	3.2.	Unit ECEPE.U1 – Element 3: Produktzulassung und Normen	9
	3.2.	4 Unit ECEPE.U1 – Element 4: Eingebettete Automobilsysteme	. 10
	3.2.	Unit ECEPE.U1 – Element 5: ePowertrain-Architektur	. 11
	3.3	Unit ECEPE.U2 System engineering (FunKTIONSBASIERTE Entwicklung)	. 12
	3.3.	1 Unit ECEPE.U2 – Element 1: Funktionsbasierte Entwicklung	. 12
	3.3.	2 Unit ECEPE.U2 – Element 2: Aspekte der funktionalen Sicherheit	. 13
	3.3.	3 Unit ECEPE.U2 – Element 3: Aspekte der Cybersicherheit	. 14
	3.4	U.3 Antriebssysteme	. 15
	3.4.	1 Unit ECEPE.U3 – Element 1: eMotor	. 15
	3.4.	Unit ECEPE.U3 – Element 2: Leistungselektronik, Wechselrichter	. 16
	3.4.	3 Unit ECEPE.U3 – Element 3: Motorsteuergerät	. 17
	3.4.	4 Unit ECEPE.U3 – Element 4: Hybride Steuerungssysteme	. 18
	3.4.	Unit ECEPE.U3 – Element 5: Energieumwandlungssysteme	. 19
	3.4.	Unit ECEPE.U3 – Element 6: Übertragungssysteme	. 20
	3.5	U.4 Energiespeichersysteme	. 20
	3.5.	1 Unit ECEPE.U4 – Element 1: Batteriesysteme	. 21

	3.5.2	Unit ECEPE.U4 – Element 2: Batteriemanagementsysteme	22
	3.5.3	Unit ECEPE.U4 – Element 3: Brennstoffzellen	23
	3.6 U	J.5 Lebenszyklusmanagement	24
	3.6.1	Unit ECEPE.U5 – Element 1: Produktlebenszyklus	24
	3.6.2	Unit ECEPE.U5 – Element 2: Lebenszyklusmanagement	25
4	Refere	enZEN	27
5	Anhan	ng A Beschreibung der EuroSPI-Zertifizierung	29
	5.1 E	uroSPI Certificates and Services GmbH Beschreibung	29
	5.2 E	uroSPI SEIf Assessment and Exam System	31
	5.2.1	EuroSPI – ECEPE Registration and Skills Browsing System	32
	5.2.2	EuroSPI – ECEPE-Selbstbewertungssystem	38
	5.2.3	EuroSPI – ECEPE Prüfungssystem	41
	5.3 E	uroSPI-Skills-Definitions modell	44
	5.3.1	EuroSPI – Zertifikatstypen	44
6	Anhan	ng B EuroSPI-Abdeckung von Qualifikationsschemata	45
	6.1.1	Zuordnung basierend auf NVQ-Qualifikationsstufen	45
	6.1.2	Kartierung basierend auf den Lernstufen des Europäischen Qualifikationsrahmens (EQF).
		46	
7	Anhan	ng C ECQA Rechtlicher Hintergrund für die Zertifizierung	48
	7.1.1	ISO/IEC 17024-Standard für Personalzertifizierungsprogramme	48
	7.1.2	EuroSPI und ISO/IEC 17024-Standard	48
	7.1.3	VERBINDUNG mit Institutionen	48
ጸ	Δnney	D ZertifizierungsReferenzen	49

EINLEITUNG

1.1 ZIELE

Das Ziel ist es, eine Einführung in die beschriebene Berufsrolle basierend auf einem Modell zur Definition von angewandten Fähigkeiten zu geben.

1.2 ZWECK DES DOKUMENTS

Der Zweck dieses Dokuments ist die Definition von Kompetenzen der Job Rolle des Functional Safety Engineer basierend auf dem EuroSPI/ASA-Kompetenzdefinitionsmodell.

1.3 GELTUNGSBEREICH

Das Dokument beinhaltet

- Eine Beschreibung der der Job Rolle des Functional Safety Engineer
- Eine Definition der Fähigkeiten basierend auf dem EuroSPI/ASA-Kompetenzdefinitionsmodell

2 EUROSPI SKILLS DEFINITIONSMODELL

A skills definition contains the following items (see Picture 1):

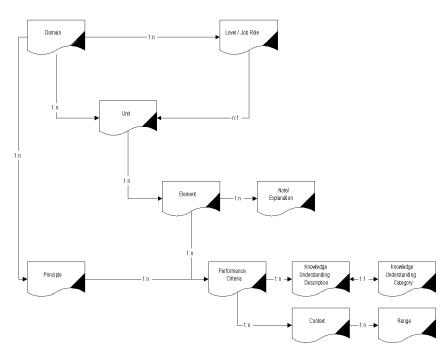


Figure 1 The Skill Definition Model (1:n = one to many relationship)

Kontext: Eine Kategorie von Bereichen. Ein Teilnehmer muss in der Lage sein, seine Kompetenz in einem Anwendungsbereich (Automotive) nachzuweisen.

Domäne: Eine Berufsgruppe, z.B. Automotive Engineer, oder Software Engineering.

Element: Beschreibung eines bestimmten Aspekts der von einem Arbeitnehmer verrichteten Arbeit, entweder eine bestimmte Aufgabe, die der Arbeitnehmer zu erledigen hat, oder eine bestimmte Arbeitsweise. Jedes Element besteht aus einer Reihe von Leistungskriterien.

Nachweis: Befähigungsnachweis.

Wissens- und Verständniskategorie: Eine Kategorie von Wissens- und Verständnisbeschreibungen.

Wissens- und Verständnisbeschreibung: Eine Beschreibung von bestimmtem Wissen und Verständnis. Um in einer Einheit als kompetent beurteilt zu werden, muss ein Teilnehmer nachweisen, dass er das gesamte damit verbundene Wissen und Verständnis besitzt und anwenden kann.

NVQ (mit Sitz in Großbritannien): Der nationale Berufsqualifikationsstandard von England, Wales und Nordirland.

Leistungskriterium (Performance Criterion / Leistungsnachweis): Beschreibung der Mindestkompetenzen, die ein Teilnehmer nachweisen muss, um als kompetent beurteilt zu werden. Ein Leistungskriterium kann relevante Kontexte (Automotive) haben.

Prinzip (Principle): Eine Erklärung guter Absichten; es untermauert jede kompetente Domänenpraxis.

Bereich: Beschreibung eines bestimmten Umstands und Zustands einer Leistungskriteriumsangabe.

Qualifikation: Die Anforderungen an eine Person, um in einen bestimmten Beruf einzutreten oder darin voranzukommen.

Berufsrolle (Job Role): Ein bestimmter Beruf, der einen Teil des Domänenwissens abdeckt. Z.B. Domäne = Functional Safety, Job-Rolle = Functional Safety Manager.

Einheit (Unit): Eine Liste bestimmter Tätigkeiten, die am Arbeitsplatz ausgeführt werden müssen. Es ist die oberste Fertigkeit in der britischen Qualifikationsstandardhierarchie und jede Einheit besteht aus einer Reihe von Elementen.

Die obige Struktur wurde ursprünglich vom DTI (Department of Trade and Industry) im Vereinigten Königreich für die NVQ-Standards (National Vocational Qualification) vorgeschlagen. Diese Modelle wurden von anderen Ländern wiederverwendet und leicht modifiziert, als sie anfingen, Kompetenzprofile und Job Rollen einzusetzen [1], [2]. ISCN (Entwickler der Plattform) war Partner in den ersten EU-Projekten (CREDIT, 1998 bis 2001), die solche neuen Qualifizierungsstrategien aufgesetzt haben.

This model has been extended and mapped to other qualification programs:

- Erasmus+: A Performance Criterion / Leistungsnachweis is also an LO (Learning Objetive)
- ESCO: A Performance Criterion / Leistungsnachweis can be a skill or a knowledge. This way we get lements of skills that contains skills or knowledge (what ESCO proposes).

Dieses Modell wurde erweitert und auf andere Qualifizierungsprogramme abgebildet:

- Erasmus+: Ein Leistungskriterium (Performance Criterion / Leistungsnachweis) ist auch ein LO (Lernziel)
- ESCO: Ein Leistungskriterium kann eine Fertigkeit oder ein Wissen sein. Auf diese Weise erhalten wir Elemente von Fähigkeiten, die Fähigkeiten oder Wissen enthalten (was ESCO vorschlägt).

3 SKILLS DEFINITION FOR THE JOB ROLE "E-POWERTRAIN ENGINEER"

3.1 THE SKILLS DESCRIPTIONS

Domain Akronym: Engineering

Domain Titel: Powertrain

Domain Beschreibung:

Job Role Akronym: ECEPE

Job Rollen Name: e-Powertrain Engineer

Beschreibung:

Die Skill Card umfasst die folgenden thematischen Lerneinheiten und Lernelemente

U.1 Einführung

U1.E1 ePowertrain-Ingenieur

U1.E2 Produktlebenszyklus

U1.E3 Produktzulassung und Normen

U1.E4 ePowertrain-Ingenieur

U1.E5 ePowertrain-Architektur

U.2 System Engineering (Funktionsbasierte Entwicklung)

U2.E1 Funktionsbasierte Entwicklung

U2.E2 Aspekte der funktionalen Sicherheit

U2.E3 ePowertrain-Ingenieur

U.3 Antriebssysteme

U3.E1 eMotor

U3.E2 Leistungselektronik, Wechselrichter

U3.E3 Motorsteuereinheit

U3.E4 Hybrid-Steuerungssysteme

U.4 Energiespeichersysteme

U4.E1 Batteriesysteme

U4.E2 ePowertrain-Ingenieur

U4.E3 Brennstoffzellen

U.5 Lebenszyklusmanagement

U5.E1 Produktlebenszyklus

U5.E2 Lebenszyklusmanagement und Geschäftsmodelle

3.2 UNIT ECEPE.U1 EINFÜHRUNG

Akronym: ECEPE.U1

Titel: Einführung

Beschreibung:

The unit introduces the e-powertrain domain. It investigates the main challenges and drivers-of-change in the automotive sector and the rationale behind electric powertrains. Different solutions such as the full electric vehicle, plug-in hybrid and hybrid are being described. The unit introduces also the product lifecycle phases from raw materials, via the development processes of embedded automotive systems (including the V-Cycle), production to the disposal.

3.2.1 Unit ECEPE.U1 – Element 1: Motivation und Herausforderungen

Akronym: ECEPE.U1.E1

Element Titel: Motivation und Herausforderungen

Element Notiz:

Dieses Element gibt einen Überblick über gesellschaftliche Veränderungen und Treiber des Wandels im Automobilbereich. Darüber hinaus werden die Umweltauswirkungen von Fahrzeugen mit elektrischem Antriebsstrang und konventionellen Antriebssystemen beschrieben.

Leistungsnachweise:

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U1.E1.PC1	Der Student kennt die Umweltauswirkungen des
	Automobilbereichs.
ECEPE.U1.E1.PC2	Der Student kann Treiber des Wandels definieren und
	gesellschaftliche Herausforderungen für die Automobilindustrie einschätzen.
ECEPE.U1.E1.PC3	Der Student konnt Herausforderungen und Veränderungen, denen
ECEPE.UI.EI.PC3	Der Student kennt Herausforderungen und Veränderungen, denen
	die Automobildomäne derzeit ausgesetzt ist.

ECEPE.U1.E1.PC4	Der Student kann die unterschiedlichen Umweltauswirkungen
	verschiedener Antriebssysteme beschreiben.

Table 1 Performance Criteria / Leistungsnachweise für das ElementECEPE.U1.E1

3.2.2 Unit ECEPE.U1 – Element 2: Produktlebenszyklus (Einführung)

Akronym: ECEPE.U1.E2

Element Titel: Produktlebenszyklus (Einführung)

Element Notiz:

Dieses Element gibt einen Überblick über die Phasen des Produktlebenszyklus von den Rohstoffen über die Entwicklungsprozesse (einschließlich des V-Zyklus), die Produktion bis hin zur Entsorgung. Darüber hinaus wird die Bedeutung von Dienstleistungen in Lebenszyklusaktivitäten gelehrt.

Leistungsnachweise

Der Student/die Studentin kann einen Nachweis für folgende Kompetenzen in Form von "performance criteria" (PC) / Leistungsnachweisen erbringen:

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U1.E2.PC1	Der Student kann Kenntnisse über das Product Life Cycle
	Management, Second Life und Unterschiede für bestimmte Teile
	des Antriebsstrangs nachweisen.
ECEPE.U1.E2.PC2	Der Student kann Kenntnisse über den V-Cycle-
	Entwicklungsansatz nachweisen.

Table 2 Performance Criteria / Leistungsnachweise für das ElementECEPE.U1.E2

3.2.3 Unit ECEPE.U1 – Element 3: Produktzulassung und Normen

Akronym: ECEPE.U1.E3

Element Titel: Produktzulassung und Normen

Element Notiz:

Dieses Element vermittelt Kenntnisse über bestehende Normen und Vorschriften in Bezug auf Elektrofahrzeuge und deren Antriebsstrangkomponenten.

Leistungsnachweise

Der Student/die Studentin kann einen Nachweis für folgende Kompetenzen in Form von "performance criteria" (PC) / Leistungsnachweisen erbringen:

Performance Criterion /	Nach	weis - die	/der St	udent(in)	kann	folgende	Kompet	tenzen
Leistungsnachweis	zeige	zeigen						
ECEPE.U1.E3.PC1	Der	Der Student		kennt	verschied		е	große
	Stand	Standardisierungsorganisationen.						
ECEPE.U1.E3.PC2	Der Student kennt verschiedene Hauptkategorie				egorien	von		
	Elektı	Elektrofahrzeug- und Elektroantriebsstandards.						
ECEPE.U1.E3.PC3	Der Student kennt die Vorschriften und Verfahren der Zulassung							
	von F	von Fahrzeugen mit Elektroantrieb.						

Table 3 Performance Criteria / Leistungsnachweise für das ElementECEPE.U1.E3

3.2.4 Unit ECEPE.U1 – Element 4: Eingebettete Automobilsysteme

Akronym: ECEPE.U1.E4

Element Titel: Eingebettete Automobilsysteme

Element Notiz:

Dieses Element gibt einen Überblick über Embedded-Automotive-Systemarchitekturen und kombinierte Controller-Strukturen. Das Element beschreibt den Unterschied zwischen Komponenten der Unterhaltungselektronik und Automobilkomponenten und beschreibt die Einschränkungen eingebetteter Automobilsysteme.

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U1.E4.PC1	Der Student kennt den Unterschied zwischen den Beschränkungen
	für Komponenten der Unterhaltungselektronik und den
	Beschränkungen für eingebettete Systeme im Automobilbereich.
ECEPE.U1.E4.PC2	Der Student kann typische Betriebsbedingungen,
	Umwelteinschränkungen und andere wichtige Nutzungsaspekte
	von eingebetteten Automobilsystemen identifizieren.

ECEPE.U1.E4.PC3	Der Student versteht die Schlüsselkonzepte eingebetteter				
	Fahrzeugsystemarchitekturen.				
ECEPE.U1.E4.PC4	Der Student kann typische kombinierte Steuerungstypen und				
	wichtige Architekturansätze beschreiben.				
ECEPE.U1.E4.PC5	Der Student kann die Besonderheiten von Echtzeit- und				
	eingebetteten Automobilsystemen beschreiben.				

Table 4 Performance Criteria / Leistungsnachweise für das ElementECEPE.U1.E4

3.2.5 Unit ECEPE.U1 – Element 5: ePowertrain-Architektur

Akronym: ECEPE.U1.E5

Element Titel: ePowertrain-Architektur

Element Notiz:

Dieses Element erklärt verschiedene Systemarchitekturen eines E-Antriebsstrangs, einschließlich Vollelektroauto, Hybrid, Range-Extender-Modell und Brennstoffzelle. Für jeden Typ wird die Systemarchitektur mit unterschiedlichen Steuergeräten, mechatronischen Funktionen pro Steuergerät, Schnittstellen auf Fahrzeugebene und Schnittstellen zum Elektromotor beschrieben. Das Element behandelt auch die wichtigsten Funktionen auf Fahrzeugebene und die gegenseitige Abhängigkeit der über Bussignale verbundenen Steuergeräte.

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenz	en						
Leistungsnachweis	zeigen							
ECEPE.U1.E5.PC1	Der Student kann die wesentlichen Elemente ein	ner						
	Systemarchitektur eines vollelektrischen Antriebsstrar	ngs						
	beschreiben.							
ECEPE.U1.E5.PC2	Der Student kann die wesentlichen Elemente ein	ner						
	Systemarchitektur eines Hybridantriebsstrangs beschreiben.							
ECEPE.U1.E5.PC3	Der Student kann die wesentlichen Elemente ein	ner						
	Systemarchitektur eines Range-Extender-basierten Antriebsstrangs							
	beschreiben.							

ECEPE.U1.E5.PC4	Der	Student	kann	die	wesentlichen	Elemente	einer
	Syste	marchitekt	ur eines	brenn	stoffzellenbasier	ten Antriebss	strangs
	besch	reiben.					

Table 5 Performance Criteria / Leistungsnachweise für das ElementECEPE.U1.E5

3.3 UNIT ECEPE.U2 SYSTEM ENGINEERING (FUNKTIONSBASIERTE ENTWICKLUNG)

Akronym: ECEPE.U2

Titel: System Engineering

Beschreibung:

Die Einheit führt in das Systemarchitekturdenken im Kontext eines E-Antriebsstrangs mit einem Verständnis des funktionalen Systemdesigns, des systemweiten Feature-Denkens für funktionale Sicherheit und der Entwicklung im Zusammenhang mit der Cybersicherheit ein. Es beleuchtet die Hauptkomponenten eines E-Antriebsstrangs, die Ansätze und Gründe hinter zuverlässigen (Sicherheits-) Konstruktionskonzepten für elektrische Antriebsstränge. Verschiedene Konzepte wie Signalflusskonzepte, Wirkungskette zwischen Komponenten und Risikomanagement im komplexen Systemdesign werden beschrieben.

3.3.1 Unit ECEPE.U2 – Element 1: Funktionsbasierte Entwicklung

Akronym: ECEPE.U2.E1

Element Titel: Funktionsbasierte Entwicklung

Element Notiz:

Dieses Element erklärt die Systemarchitektur eines E-Antriebsstrangs mit einem Verständnis für Systemfunktionsdesign. Die Systemarchitektur umfasst verschiedene Steuergeräte, softwarebasierte mechatronische Funktionen, Schnittstellen auf Fahrzeugebene und Schnittstellen zum Elektromotor. Die ePowertrain-Architektur beinhaltet auch eine Liste von Funktionen, die als Wirkungskette zwischen Fahrzeug, Motorsteuergerät, Wechselrichter, Batteriemanagementsystem und Elektromotor beschrieben werden.

Leistungsnachweise

Performance Criterion /	Nachweis	- die/der	Student(in)	kann	folgende	Kompetenzen
Leistungsnachweis	zeigen					

ECEPE.U2.E1.PC1	Der Student kann die Funktionsweise der beteiligten elektronischen				
	Steuergeräte erklären.				
ECEPE.U2.E1.PC2	Der Student kann den funktionalen Steuerungsfluss in einer E-				
	Antriebsstrang-Architektur beschreiben und wie das Fahrzeug mit				
	dem System verbunden ist.				
ECEPE.U2.E1.PC3	Der Student kann die Systemarchitektur anwenden und				
	Wirkungsketten (Funktionen auf Fahrzeugebene) in die				
	Systemarchitektur einzeichnen.				
ECEPE.U2.E1.PC4	Der Student kann Systemanforderungen schreiben, die an				
	Software-, Hardware- und Elektrik-Entwicklungsteams				
	weitergeleitet werden können.				

Table 6 Performance Criteria / Leistungsnachweise für das ElementECEPE.U2.E1

3.3.2 Unit ECEPE.U2 – Element 2: Aspekte der funktionalen Sicherheit

Akronym: ECEPE.U2.E2

Element Titel: Aspekte der funktionalen Sicherheit

Element Notiz:

Dieses Element gibt einen Überblick über typische ASIL-Klassifizierungen (Automotive Safety Integrity Level) und Sicherheitsziele im Zusammenhang mit ISO 26262, die sich auf die funktionale Gestaltung eines E-Antriebsstrangs auswirken.

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U2.E2.PC1	Der Student kennt typische Automotive Safety Integrity Level (ASIL)
	Ratings von Batteriesystemen und die damit verbundenen
	Sicherheitsziele.
ECEPE.U2.E2.PC2	Der Student kann typische ISO 26262 bezogene
	Sicherheitsmaßnahmen definieren, die bei
	Batteriemanagementsystemen berücksichtigt werden.

ECEPE.U2.E2.PC3	Der Student kennt typische ASIL-Einstufungen von elektrischen		
	Steuerungssystemen und Motoren in Autos und die damit		
	verbundenen Sicherheitsziele.		
ECEPE.U2.E2.PC4	Der Student kann typische ISO 26262 bezogene		
	Sicherheitsmaßnahmen definieren, die bei		
	Batteriemanagementsystemen berücksichtigt werden.		
ECEPE.U2.E2.PC5	Der Student ist in der Lage, eine eigene HARA (Hazard and Risk		
	Analysis) basierend auf ISO 26262 durchzuführen und		
	Sicherheitsziele und Sicherheitsmaßnahmen abzuleiten.		

Table 5 Performance Criteria / Leistungsnachweise für das ElementECEPE.U2.E2

3.3.3 Unit ECEPE.U2 – Element 3: Aspekte der Cybersicherheit

Akronym: ECEPE.U2.E3

Element Titel: Aspekte der Cybersicherheit

Element Notiz:

Dieses Element gibt einen Überblick über Cybersicherheitsaspekte von Automobilsystemen. Das Element beschreibt grundlegende Designansätze für Design im Zusammenhang mit Cybersicherheit, Denkansätze zu Bedrohungen und Angriffsflächen sowie Unterschiede zwischen Sicherheit im Allgemeinen und Cybersicherheit im Automobilbereich.

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U2.E3.PC1	Der Student versteht die Besonderheiten der Automotive Cyber Security.
ECEPE.U2.E3.PC2	Der Student ist in der Lage, potentielle Bedrohungen und Angriffsflächen von Automotive-Systemen zu identifizieren.
ECEPE.U2.E3.PC3	Der Student kennt den Security-by-Design-Ansatz.
ECEPE.U2.E3.PC4	Der Student kann Cybersicherheitsrelevante Automobilsysteme identifizieren.

ECEPE.U2.E3.PC5	Der Student ist in der Lage, sicherheitsrelevante Assets zu
	identifizieren und erforderliche Cybersicherheitsansätze zum
	Schutz der Assets abzubilden.

Table 8 Performance Criteria / Leistungsnachweise für das ElementECEPE.U2.E3

3.4 U.3 ANTRIEBSSYSTEME

Akronym: ECEPE.U3 **Titel:** Antriebssysteme

Beschreibung:

Diese Einheit gibt einen Überblick über die Aufteilung von Elektromotoren, deren Prinzipien, Verhalten und Steuerungsmethoden sowie einen Überblick über die Aufteilung von Auto-/Fahrzeug-Wechselrichtern und Komponenten der Leistungselektronik (PE). Die Motorsteuerung zur Verwaltung der Phasenströme des Elektromotors erfolgt durch eine spezielle Software namens Field Oriented Controller (FOC) Software. Definierte Software-Tool-Setups werden verwendet, um die Motorsteuerungssoftware zu erklären. Es wird ein Überblick über Blockstrukturen, Eigenschaften, Regelverfahren und Strategien hybrider Regelsysteme gegeben.

3.4.1 Unit ECEPE.U3 – Element 1: eMotor

Akronym: ECEPE.U3.E1 **Element Titel**: eMotor

Element Notiz:

Dieses Element gibt einen Überblick über die Aufteilung von Elektromotoren, deren Prinzip, Verhalten und Regelverhalten. Dort werden beispielhaft e-motorische Integrationsinformationen, ausgewählte wichtige Komponenten, Anschlussstandards, Kühlung, Schutzmaßnahmen und so weiter beschrieben.

Leistungsnachweise

Performance Criterion /	Nachwe	eis - die/de	r Student	(in) kann folgend	le Kompet	enzen
Leistungsnachweis	zeigen					
ECEPE.U3.E1.PC1	Der	Student	kennt	verschiedene	Typen	und
	allgemeine/grundlegende Eigenschaften von Elektromotoren für					
	den aut	omobilen Ar	ntriebsstrar	ngbereich.		

ECEPE.U3.E1.PC2	Der Student kann Typen von Elektromotoren und das genaue			
	Prinzip für Antriebssysteme von Autos beschreiben. Insbesondere			
	AC-PMSM, AM DC-BLDC, DC.			
ECEPE.U3.E1.PC3	Der Student kennt das reale Verhalten von E-Motoren im			
	Antriebsstrang und kann ein Steuerverhalten beschreiben.			
ECEPE.U3.E1.PC4	Der Student verfügt über ausreichende Kenntnisse, um spezifische			
	Fehlfunktionen von Elektromotoren zu beschreiben/definieren.			
ECEPE.U3.E1.PC5	Der Student kann Beispiele der emotorischen realen Integration			
	beschreiben, kann wichtige ausgewählte Komponenten,			
	Verbindungsstandards, Kühlung, Schutzmaßnahmen usw.			
	beschreiben.			

Table 9 Performance Criteria / Leistungsnachweise für das ElementECEPE.U3.E1

3.4.2 Unit ECEPE.U3 – Element 2: Leistungselektronik, Wechselrichter

Akronym: ECEPE.U3.E2

Element Titel: Leistungselektronik, Wechselrichter

Element Notiz:

Dieses Element gibt einen Überblick über die Aufteilung von Kfz-/Fahrzeug-Wechselrichtern und Leistungselektronik (PE)-Komponenten, deren Prinzip, Verhalten und Regelverfahren (z. B. Skalarregelung, Zweiwert-Stromregelung, Rechteckregelung, Vektorregelung, direkte Drehmomentregelung). Der Student kennt Beispiele für Wechselrichter-Autointegrationen.

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U3.E2.PC1	Der Student weiß, was "Leistungselektronik" bedeutet –
	Leistungsteil und Steuerteil eines Umrichters allgemein. Student
	kennt Typenbeschreibung und Einteilung von Wechselrichtern im
	Automotive-Bereich.

ECEPE.U3.E2.PC2	Der Student kann Typen und Eigenschaften (Verhalten, VA-
	Eigenschaften) der wichtigsten PE-Komponenten - Kondensatoren,
	Halbleiter und Treiber - beschreiben.
ECEPE.U3.E2.PC3	Der Student kann das Grundprinzip von Fahrzeugwechselrichtern,
	deren Leistungsteilaufbau und Regelungsverfahren beschreiben.
ECEPE.U3.E2.PC4	Der Student ist in der Lage, spezifische Fehlfunktionen von
	Wechselrichtern im Automotive-Bereich (keine Industrie-
	Wechselrichter) zu beschreiben/definieren.
ECEPE.U3.E2.PC5	Der Student ist in der Lage, Beispiele für die Fahrzeugintegration
	von Wechselrichtern zu beschreiben.

Table 10 Performance Criteria / Leistungsnachweise für das ElementECEPE.U3.E2

3.4.3 Unit ECEPE.U3 – Element 3: Motorsteuergerät

Akronym: ECEPE.U3.E3

Element Titel: Motorsteuergerät

Element Notiz:

Die Motorsteuerung zur Verwaltung der Phasenströme des Elektromotors erfolgt durch eine spezielle Software namens Field Oriented Controller (FOC) Software. Dies

- Steuert die Phasenströme
- Ich basiere normalerweise auf einem gebrauchsfertigen Software-Entwicklungskit
- Beinhaltet eine eingebettete Treibersoftware plus Messung von Sensoren (zum Auslesen der Rotorposition, Rotordrehzahl usw.)
- Die meisten großen Anbieter passen ihre eigene Version eines FOC-Moduls an

Es gibt definierte Software-Tool-Setups (siehe Referenzen), mit denen die Motorsteuerungssoftware erklärt werden kann.

Leistungsnachweise

Performance Criterion /	Nachweis -	die/der	Student(in)	kann	folgende	Kompetenzen
Leistungsnachweis	zeigen					

ECEPE.U3.E3.PC1	Der Student kann die Funktionsweise eines feldorientierten Reglers
	(FOC) erklären und welche Algorithmen im Allgemeinen
	implementiert werden.
ECEPE.U3.E3.PC2	Der Student kann auf einen Labormotor den FOC anwenden und in
	bestimmte Zustände schalten.
ECEPE.U3.E3.PC3	Der Student ist in der Lage, die Unterschiede zwischen den FOC-
	Modellen zu verstehen, z.B. eines, das ein Schätzmodell
	verwendet, und das andere, das eine Reihe von Sensoren zum
	Zurücklesen und Steuern verwendet.
ECEPE.U3.E3.PC4	Der Student weiß, wie man ein FOC-Modul kalibriert und an einen
	bestimmten Motor anpasst.

Table 11 Performance Criteria / Leistungsnachweise für das ElementECEPE.U3.E3

3.4.4 Unit ECEPE.U3 – Element 4: Hybride Steuerungssysteme

Akronym: ECEPE.U3.E4

Element Titel: Hybride Steuerungssysteme

Element Notiz:

Dieses Element gibt einen Überblick über Blockstrukturen, Eigenschaften, Regelverfahren und Strategien hybrider Regelsysteme. Die Beschreibung konzentriert sich hauptsächlich auf HW-Ressourcen, Blockdiagramme, die Funktionalitäten beschreiben. Es werden spezifische Informationen über hybride Steuerungssysteme und ihre HW-Eigenschaften, Kommunikationsmittel, allgemeine Informationen über die Zusammenarbeit und ihre spezifischen Anwendungen erwähnt.

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U3.E4.PC1	Der Student kennt die Bedeutung des Begriffs "Hybridantrieb" und
	kann die Blockstruktur/das Schema eines ECU-Konverter-E-Motor-
	ICE (Internal Combustion Engine) zeichnen und genau beschreiben.
ECEPE.U3.E4.PC2	Der Student kann Typen und Eigenschaften spezifischer hybrider
	Steuerungssysteme beschreiben – zum Beispiel Definition von

	Eingängen/Ausgängen, Struktur, Beschreibung von Verbindungen und Blöcken, Kommunikationsmittel.
ECEPE.U3.E4.PC3	Der Student kennt grundlegende Steuerungs- und Regelungsstrategien und kann das Zusammenspiel aller wichtigen Knoten beschreiben: Ladegerät – Batteriesystem – Umrichter – E- Motor – Motorsteuergerät.
ECEPE.U3.E4.PC4	Der Student ist in der Lage, spezifische Fehlfunktionen von hybriden Steuerungssystemen im Automotive-Bereich (nicht industrielle Wechselrichter) zu beschreiben/definieren.
ECEPE.U3.E4.PC5	Der Student kann Beispiele für die Integration hybrider Steuerungssysteme beschreiben.

Table 12 Performance Criteria / Leistungsnachweise für das ElementECEPE.U3.E4

3.4.5 Unit ECEPE.U3 – Element 5: Energieumwandlungssysteme

Akronym: ECEPE.U3.E5

Element Titel: Energieumwandlungssysteme

Element Notiz:

Dieses Element befasst sich mit Energieumwandlungssystemen, die in Hybrid-Elektrofahrzeugen und Elektrofahrzeugen mit erweiterter Reichweite verwendet werden. Auch regeneratives Bremsen und kinetisches Energiespeichersystem (KERS) werden berücksichtigt.

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen						
Leistungsnachweis	zeigen						
ECEPE.U3.E5.PC1	Der Student kennt die Eigenschaften von Verbrennungsmotoren						
	und elektrischen Generatoren.						
ECEPE.U3.E5.PC2	Der Student kennt den Fahrzustand und die Anforderungen an						
	einen E-Antriebsstrang mit Range Extender.						
ECEPE.U3.E5.PC3	Der Student kennt die Betriebsarten von Traktionsantrieben und						
	das Fahr-/Bremsverhalten.						

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U3.E5.PC4	Der Student kann die Prinzipien des regenerativen Bremsens erklären.
ECEPE.U3.E5.PC5	Der Student kennt Typen und Elemente von KERS-Systemen.

Table 13 Performance Criteria / Leistungsnachweise für das ElementECEPE.U3.E5

3.4.6 Unit ECEPE.U3 – Element 6: Übertragungssysteme

Akronym: ECEPE.U3.E6

Element Titel: Übertragungssysteme

Element Notiz:

Dieses Element befasst sich mit Getriebetypen, deren Aufbau und Komponenten sowie der Architektur von HW- und SW-Getriebesteuerungssystemen.

Leistungsnachweise

Der Student/die Studentin kann einen Nachweis für folgende Kompetenzen in Form von "performance criteria" (PC) / Leistungsnachweisen erbringen:

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen						
Leistungsnachweis	zeigen						
ECEPE.U3.E6.PC1	Der Student kennt den Zweck und die wichtigsten Getriebetypen						
	für konventionelle Fahrzeuge.						
ECEPE.U3.E6.PC2	Der Student kennt die Modifikationen an Getrieben, die in Hybrid-						
	Elektrofahrzeugen eingebaut sind.						
ECEPE.U3.E6.PC3	Der Student ist in der Lage, Konstruktions-, Berechnungs- und						
	kinematische Schemata verschiedener Antriebsarten und Wandler						
	zu erstellen und Planetenradsätze zu analysieren.						
ECEPE.U3.E6.PC4	Der Student kennt die Komponenten der Getriebesteuerung und						
	deren Funktion.						

Table 14 Performance Criteria / Leistungsnachweise für das ElementECEPE.U3.E6

3.5 U.4 ENERGIESPEICHERSYSTEME

Akronym: ECEPE.U4

Titel: Energiespeichersysteme

Beschreibung:

Die Einheit 4 "Energiespeichersysteme" gibt einen Überblick über Batteriesysteme, Batteriemanagementsysteme und Brennstoffzellensysteme. Diskutiert werden Unterschiede zwischen Traktionsbatterie in einem Pkw mit Elektroantrieb (EV) und Traktionsbatterie für Hybridfahrzeug (EHV) sowie die Unterschiede in den Eigenschaften beider Bordnetze. Problemstellungen, Systemlösungen, Schaltungslösungen zur Messung und Bewertung des Isolationszustandes, BMS Hard- und Softwarekomponenten und Prinzipien von Brennstoffzellensystemen sind die behandelten Hauptthemen.

3.5.1 Unit ECEPE.U4 – Element 1: Batteriesysteme

Akronym: ECEPE.U4.E1

Element Titel: Batteriesysteme

Element Notiz:

Dieses Element gibt einen Überblick über die Einteilung der Batterietypen und deren Eigenschaften, die für Bordakkumulatoren und Traktionsbatterien geeignet sind (deren Eigenschaften, Prinzip, Verhalten und Ladeverhalten, Aufbau des Bordsystems und andere). Der Student kennt Beispiele für Batterieintegrationen und deren Funktionsstörungen. Der Student erhält Kenntnisse über die Gründe für den Einsatz von Ultrakondensatoren.

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U4.E1.PC1	Der Student kennt das Konzept von Arten und Gründen für die Integration von Stromquellen in Autos.
ECEPE.U4.E1.PC2	Der Student kann die Einteilung der Batterietypen und deren Eigenschaften beschreiben, die für Bordakkumulatoren und Traktionsbatterien geeignet sind.
ECEPE.U4.E1.PC3	Der Student kann die Unterschiede zwischen Traktionsbatterie in einem Pkw mit Elektroantrieb (EV) und Traktionsbatterie für Hybridfahrzeug (EHV) sowie die Unterschiede in den Eigenschaften beider Bordnetze erklären.

ECEPE.U4.E1.PC4	Der Student kann die Anbindung von Bordsystemen mit Anbindung							
	an Traktionsbatterie und Bordbatterie (z. B. Ladegerät,							
	Traktionsbatterie, Bordbatterie, Wechselrichter, Motor)							
	beschreiben.							
ECEPE.U4.E1.PC5	Der Schüler kennt die häufigsten Probleme mit Traktionsbatterien							
	und kennt die Gründe für deren Auftreten.							
ECEPE.U4.E1.PC6	Der Student kennt die konstruktive Lösung der Integration von							
	Bordakkumulatoren und Traktionsbatterien für EV und EHV.							
ECEPE.U4.E1.PC7	Der Student kennt die Schaltungslösungen zur Messung und							
	Bewertung des Isolationszustandes und kennt die einschlägigen							
	Normen zur elektrischen Sicherheit (ECE R100, CSN 33 0010) sowie							
	deren Anwendung in verschiedenen Ländern.							
ECEPE.U4.E1.PC8	Der Student kennt die Eigenschaften des Ultrakondensators und							
	kann die Schaltungslösungen des Konzepts der							
	Ultrakondensatorbatterien (ein Modul bestehend aus							
	Ultrakondensatoren + Wandlern) darstellen.							
ECEPE.U4.E1.PC9	Der Student kann die Betriebszustände und Energieflüsse innerhalb							
	der Verbindungen: Batterie-Ultrakondensatormodul-							
	Wechselrichter-Motor beschreiben							

Table 15 Performance Criteria / Leistungsnachweise für das ElementECEPE.U4.E1

3.5.2 Unit ECEPE.U4 – Element 2: Batteriemanagementsysteme

Akronym: ECEPE.U4.E2

Element Titel: Batteriemanagementsysteme

Element Notiz:

Dieses Element gibt einen Überblick über Batteriemanagementsysteme, Hardware, Software und sicherheitsrelevante Hochspannungskomponenten (HV). Das Element beschreibt die Besonderheiten von kontinuierlich betriebenen HV-Systemen, die BMS-HW-, BMS-SW-Funktionen und sicherheitsrelevanten Systemkomponenten (wie Sicherungen, Sensoren und Relais).

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen							
Leistungsnachweis	zeigen							
ECEPE.U4.E2.PC1	Der Student kann Funktionen und Anwendung von							
	Batteriemanagementsystemen (BMS) beschreiben.							
ECEPE.U4.E2.PC2	Der Student ist in der Lage, Komponenten, Besonderheiten und							
	Randbedingungen für ein BMS zu definieren.							
ECEPE.U4.E2.PC3	Der Student kennt die HW-Funktionen, die ein BMS							
	implementieren muss.							
ECEPE.U4.E2.PC4	Der Student kann notwendige SW-Funktionalitäten definieren, die							
	ein BMS implementieren muss.							
ECEPE.U4.E2.PC5	Der Student kann spezifische Fehlfunktionen von BMS und							
	Sicherheitsfunktionen beschreiben/definieren.							

Table 14 Performance Criteria / Leistungsnachweise für das ElementECEPE.U4.E2

3.5.3 Unit ECEPE.U4 – Element 3: Brennstoffzellen

Akronym: ECEPE.U4.E3

Element Titel: Brennstoffzellen

Element Notiz:

Dieses Element befasst sich mit dem Funktionsprinzip von Brennstoffzellen, ihren Vor- und Nachteilen und ihrer Kombination mit Batterien/Superkondensatoren.

Leistungsnachweise

Performance Criterion /	Nachweis - die/der Student(in) kann folgende Kompetenzen
Leistungsnachweis	zeigen
ECEPE.U4.E3.PC1	Der Student kennt die Funktionsweise und Eigenschaften von
	Brennstoffzellen.
ECEPE.U4.E3.PC2	Der Student kennt die verschiedenen Typen von Brennstoffzellen.
ECEPE.U4.E3.PC3	Der Student kennt die Vor- und Nachteile von Brennstoffzellen.
ECEPE.U4.E3.PC4	Der Student kennt die Kombination der Brennstoffzelle mit
	Batterie/Ultrakondensator.

 Table 16 Performance Criteria / Leistungsnachweise für das ElementECEPE.U4.E3

3.6 U.5 LEBENSZYKLUSMANAGEMENT

Akronym: ECEPE.U5

Titel: Lebenszyklusmanagement

Beschreibung:

Die Einheit 5 "Lebenszyklusmanagement" gibt einen Überblick über lebenszyklusbezogene Themen wie den Produktlebenszyklus oder das Lebenszyklusmanagement. Die Studierenden erhalten einen Einblick in verschiedene Themen wie die verschiedenen Phasen des Lebenszyklusmanagements und deren Anwendung auf praktische Themen. Darüber hinaus werden auch Geschäftsmodelle in die Lehrinhalte einbezogen.

3.6.1 Unit ECEPE.U5 – Element 1: Produktlebenszyklus

Akronym: ECEPE.U5.E1

Element Titel: Produktlebenszyklus

Element Notiz:

Dieses Element gibt einen detaillierten Überblick über verschiedene Lebenszyklusphasen und darüber hinaus über die Auswirkungen der Nachhaltigkeit. Diese Themen werden mit Blick auf Komponenten des elektrischen Antriebsstrangs vermittelt, um die Bedeutung der Nachhaltigkeit in diesem Bereich der Technik zu betonen.

Leistungsnachweise

Performance Criterion	Nachweis - die/der Student(in) kann folgende Kompetenzen						
/ Leistungsnachweis	zeigen						
ECEPE.U5.E1.PC1	Der Student kann Kenntnisse über die Bedeutung der Entwurfs-,						
	Nutzungs- und End-of-Life-Phase im Lebenszyklus nachweisen.						
ECEPE.U5.E1.PC2	Der Student kann die Auswirkungen und Abhängigkeiten von						
	Phasen, die kosten- und ertragsbezogenen Auswirkungen von						
	Phasen und darüber hinaus die Bedeutung des Service in der						
	Nutzungsphase als zu vermittelnde Themen definieren.						
ECEPE.U5.E1.PC3	Der Student ist in der Lage, Kenntnisse über die Grundlagen der						
	Nachhaltigkeit in Bezug auf Life Cycle Management darzustellen.						

	Dahe	er könne	n sie	Kenntnisse	in	sozialen	und	ökologischen
	Ökol	oilanzen l	iefern.					
ECEPE.U5.E1.PC4	Der	Student	kann	Kenntnisse	in	sozialen	und	ökologischen
	Ökobilanzen liefern.							

Table 17 Performance Criteria / Leistungsnachweise für das ElementECEPE.U5.E1

3.6.2 Unit ECEPE.U5 – Element 2: Lebenszyklusmanagement

Akronym: ECEPE.U5.E2

Element Titel: Lebenszyklusmanagement

Element Notiz:

Dieses Element gibt einen Überblick über Life Cycle Costing und Life Cycle Data Management. Das Element umfasst detaillierte Life Cycle Costing-Kalkulationssysteme und deren Schwierigkeiten sowie das Sammeln von Produktdaten und deren effizientes Management. Darüber hinaus gibt dieses Element einen Überblick über Life Cycle Service Geschäftsmodelle.

Leistungsnachweise

Performance Criterion	Nachweis - die/der Student(in) kann folgende Kompetenzen
/ Leistungsnachweis	zeigen
ECEPE.U5.E2.PC1	Der Student kann Kenntnisse über das
	Lebenszyklusberechnungssystem und die Schwierigkeiten des
	Systems präsentieren.
ECEPE.U5.E2.PC2	Der Student weiß, wie er finanzielle Risiken in Bezug auf
	Komponenten aus dem Automobilbereich analysiert und
	handhabt.
ECEPE.U5.E2.PC3	Der Student ist in der Lage, Kenntnisse in den Themenbereichen
	Product Data Management (Cloud Based Computing), Product
	Information Management und Life Cycle Management zu
	präsentieren, das die Verwaltung und Veröffentlichung von
	Produktdaten über ihren Lebenszyklus beinhaltet.
ECEPE.U5.E2.PC4	Der Student kann Wissen darüber präsentieren, warum Dienste
	fehlschlagen können. Darüber hinaus kann der Student den

Unterschied	zwischen	Erwartungen	und	wahrgenommenem
Service, dem	Service-G	AP-Modell und	l dem	Service und deren
Wertverspred	hen erläute	ern.		

Table 18 Performance Criteria / Leistungsnachweise für das ElementECEPE.U5.E2

REFERENZEN

- [1] Rodic M., Riel A., Messnarz R., Stolfa J., Stolfa S. (2016) Functional Safety Considerations for an In-wheel Electric Motor for Education. In: Kreiner C., O'Connor R., Poth A., Messnarz R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2016. Communications in Computer and Information Science, vol 633. Springer, Cham [2] DTI Department of Trade and Industry UK, British Standards for Occupational Qualification, National Vocational Qualification Standards and Levels
- [2] Messnarz R., Ekert D., Grunert F., Blume A. (2019) Cross-Cutting Approach to Integrate Functional and Material Design in a System Architectural Design Example of an Electric Powertrain. In: Walker A., O'Connor R., Messnarz R. (eds) Systems, Software and Services Process Improvement. EuroSPI 2019. Communications in Computer and Information Science, vol 1060. Springer, Cham
- [3] Texas Instruments, Motor Control Compendium, By Dave WilsonTI MCU Application Manager for Motor Control
- [4] https://www.nxp.com/design/development-boards/automotive-motor-control-development-solutions/arm-based-solutions-/s32k144-development-kit-for-sensorless-bldc:MTRDEVKSBNK144
- [5] https://www.nxp.com/design/development-boards/automotive-motor-control-development-solutions/mpc5xxx-solutions-/3-phase-sensorless-bldc-development-kit-with-nxp-mpc5606b-mcu:MTRCKTSBN5606B
- [6] https://www.microchip.com/developmenttools/ProductDetails/atsamd21bldc24v-stk
- [7] https://howtomechatronics.com/tutorials/arduino/arduino-brushless-motor-control-tutorial-esc-bldc/
- [8] Alam, M., Ahmad, A., Khan, Z., Rafat, Y. et al., "A Bibliographical Review of Electrical Vehicles (xEVs) Standards," SAE Int. J. Alt. Power. 7(1):63-98, 2018.
- [9] Regulation No 100 of the Economic Commission for Europe of the United Nations (UN/ECE) Uniform provisions concerning the approval of vehicles with regard to specific requirements for the electric power train.
- [10] Regulation No 136 of the Economic Commission for Europe of the United Nations (UN/ECE) Uniform provisions concerning the approval of vehicles of category L with regard to specific requirements for the electric power train.
- [11] https://www.iso.org
- [12] https://www.sae.org/standards
- [13] https://standards.ieee.org
- [14] http://www.jari.or.jp
- [15] http://english.catarc.org.cn/indexen.html

- [16] https://maxon.blaetterkatalog.ch/b9991/catalog/index.html?data=b9991/b999145&lang=e#8
- [17] https://www.maxongroup.com/medias/sys_master/root/8815460712478/DC-EC-Key-Information-14-EN-42-50.pdf?attachment=true
- [18] https://www.maxongroup.com/medias/sys_master/8803450814494.pdf?attachment=true
- [19] https://www.newark.com/motor-control-brushless-dc-bldc-technology
- [20] https://www.slideshare.net/Electromate/maxon-motor-webinar-dc-motor-types-and-usage-in-typical-applications
- [21] https://www.youtube.com/watch?time_continue=373&v=AINSAHzFn3Y
- [22] https://www.semikron.com/service-support/application-manual.html
- [23] https://www.semikron.com/dl/service-support/downloads/download/semikron-application-manual-power-semiconductors-english-en-2015.pdf
- [24] http://support.skillscommons.org/showcases/open-courseware/energy/e-vehicle-tech-cert/
- [25] https://diyguru.org/product/battery-management-system-bms-certification-course-electric-vehicle-2/
- [26] https://core.ac.uk/download/pdf/4276277.pdf
- $[27] \qquad \text{https://www.eaton.com/content/dam/eaton/products/electronic-components/resources/data-sheet/eaton-xt-supercapacitors-cylindrical-cells-data-sheet.pdf}$

[28]

 $https://www.murata.com/{\sim}/media/webrenewal/products/capacitor/edlc/techguide/electrical/edlc_technic al_note.pdf$

5 ANHANG A BESCHREIBUNG DER EUROSPI-ZERTIFIZIERUNG

5.1 EUROSPI CERTIFICATES AND SERVICES GMBH BESCHREIBUNG

Die EuroSPI²-Konferenzreihe (und Buchreihe) wurde 1994 als führende Konferenz im Bereich der System-, Software-, Service-, Prozess- und Produktverbesserung und -innovation mit Beiträgen aus führender Industrie und führender Forschung gegründet. SOQRATES als Arbeitsgruppe der führenden deutschen und österreichischen Industrie wurde 2003 gegründet und wird seit 2003 vom Vorsitzenden des EuroSPI moderiert und die Arbeitsgruppe trägt zu den am EuroSPI organisierten thematischen Workshops bei, um den Stand der Technik in Systemdesign, Sicherheit und Cybersicherheit zu definieren. Assessments, Qualitätsmanagement, agile Prozesse, Standards usw. Die EuroSPI-Akademie startete 2020 (basierend auf dem EU-Blueprint-Projekt DRIVES-Konzept eines Lernkompasses für die europäische Automobilindustrie) und hat innerhalb eines Jahres viele hundert geschult, und auf dem DRIVES-Lernportal Wir haben mehr als 2000 MOOC-Azubis. Die ursprünglich zur Unterstützung von ECQA entwickelten Prüfungssysteme werden nun angepasst und integriert, um europaweite Zertifizierungs- und Prüfungssysteme unter der EuroSPI Certificates & Services GesmbH zu unterstützen. Dies bündeln wir nun zu einer europäischen Initiative unter einem Dach und stellen alle Teams und Services hinter diese aggregierte gebündelte europäische Strategie.

EuroSPI² verwendet bewährte Prüfungssysteme und kooperiert mit DRIVES und ASA und unterstützt die in den DRIVES-Lernsystemen definierten Fähigkeitensets.

Siehe oben ein Beispiel für ein ECEPE-Zertifikat.

Zugang zu einem riesigen Wissenspool

- EuroSPI (<u>www.eurospi.net</u>) hat ein Programmkomitee mit Experten aus 28 Ländern.
- EuroSPI hat Key Notes von führenden Autoherstellern und Ter 1 wie VW, Porsche, KTM Motorsport, BOSCH, ZF, MAGNA usw.
- EuroSPI hat eine Buchreihe in SPRINGER, die über 500000 Mal heruntergeladen wurde und von SPRINGER online mit einem Preis ausgezeichnet wurde
- EuroSPI hat eine Arbeitsgruppe SOQRATES (soqrates.eurospi.net) mit führendem Ter 1 in Deutschland und Österreich
- EuroSPI hat eine Arbeitsgruppe für IT-gestützte Berufsbilder im Automobilbereich in der ASA (Automotive Skills Alliance).

Hintergrund der EuroSPI-Zertifizierung:

1) 29 Jahre Verbesserung der europäischen Systemsoftware-Services

EuroSPI bringt eine etablierte Gemeinschaft von Experten aus führender Industrie und Forschung zusammen, die gemeinsam zu einer jährlichen Konferenz beitragen.

2) EuroSPI-Zertifikate werden von der Automotive Skills Alliance (ASA) in der EU anerkannt

EuroSPI-Zertifikate werden von EuroSPI Certificates & Services GmbH (www.eurospi.net) in Zusammenarbeit mit DRIVES und der Automotive Skills Alliance (ASA) ausgestellt. Die ASA wurde vom <u>EU Blueprint Project Drives</u> und <u>ALBATTS</u> mit Unterstützung der European Automobile Manufacturers' Association (ACEA) gegründet.

3) EuroSPI Academy mit Hunderten von Teilnehmern

EuroSPI betreibt das <u>DRIVES Learn Compass Portal</u>, wo mehr als zweitausend Ingenieure aus der führenden Automobilindustrie an MOOCs teilnehmen. EuroSPI betreibt seit November 2020 die EuroSPI Academy, die innerhalb eines Jahres Hunderte von Auszubildenden anzieht.

4) Bewährtes Prüfungssystem mit mehr als 12.000 Prüfungen

EuroSPI verwendet ein <u>bewährtes Prüfungssystem</u>, das für über zwölftausend Prüfungen mit verschiedenen Zertifizierern verwendet wurde und in Zukunft ausschließlich von <u>EuroSPI</u> Certificates and Services verwendet wird.

5) EuroSPI bietet Vernetzungsmöglichkeiten zur europäischen Zusammenarbeit

EuroSPI organisiert jährliche <u>Workshops</u> zu thematischen Themen (zB Safety, Cybersecurity etc.), zu denen führende Forscher und Industrien beitragen. Schulungsteilnehmer und Prüflinge erhalten 20 % Preisnachlass.

Als PDF herunterladen

6) Weltweite Verbreitung (>500000)

EuroSPI hat Kooperationen mit Verlagen aufgebaut und eine renommierte <u>Buchreihe bei SPRINGER CCIS</u> mit mehr als einer halben Million Downloads gestartet. Das CCIS-Redaktionsteam umfasst Experten aus Europa, den USA, China, Japan, Russland, Indien und Südamerika.

7) Ausarbeitung bewährter Verfahren in europäischen Arbeitsgruppen

Das in den Kursen der EuroSPI Academy vermittelte Wissen wurde in Arbeitsgruppen (z. B. <u>SOQRATES</u>) entwickelt, an denen führende Unternehmen aus der Elektronik- und Automobilbranche beteiligt waren.

8) Top-Level-Infrastruktur für Kurse der EuroSPI Academy

Die Kurse der EuroSPI Academy werden in hochmodernen Lernportalen eingerichtet und verwenden Übungsmaterialien, Vorlagen und Tools zur Unterstützung von Learning by Doing.

9) Bewertungstool Nr. 1 Capability Adviser

EuroSPI besitzt, verkauft und nutzt das <u>Tool Capability Adviser</u>, das eine (Online-)Teambewertung für verschiedene Normen (z. B. Automotive SPICE, ASPICE usw.) ermöglicht und für hausinterne Standards konfiguriert werden kann. Führende Tier-1- und Tier-2-Automobilunternehmen verwenden den Capability Adviser.

10) Bewertung der Fähigkeiten von Experten, unterstützt durch das EuroSPI-Prüfungssystem

EuroSPI verfügt über ein fortschrittliches Prüfungssystem, das Teamrollen wie Assessor und Prüfungsteilnehmer verwendet, um Assessoren zu unterstützen, die Expertenfähigkeiten basierend auf bereitgestellten Nachweisen in verschiedenen Bereichen (z. B. funktionale Sicherheit, Cybersicherheit usw.) bewerten. Bei hohem Risiko reicht ein einfacher Multiple-Choice-Test nicht aus.

5.2 EUROSPI SELF ASSESSMENT AND EXAM SYSTEM

Das EuroSPI-Prüfungssystem wurde von einer ehemaligen Zertifizierungsstelle ECQA (EuroSPI Certification and Qualification Association) verwendet und wurde von ISCN entwickelt. 2021 wurde das Prüfungssystem neu konfiguriert, um künftig die ASA (Automotive Skills Alliance) und ECEPE zu unterstützen.

Die Richtlinien wurden für ECEPE angepasst.

Siehe die beiden entwickelten Richtlinien:

- How-to-Guide-Exam-Participant-Multiple-Choice-Based-Exam.docx
- How-to-Guide-Exam-Teilnehmer-Self-Assessment-Exam-Preparation.docx

5.2.1 EUROSPI – ECEPE REGISTRATION AND SKILLS BROWSING SYSTEM

Durch das Durchsuchen von Fähigkeiten können Sie die Hierarchie der erforderlichen Fähigkeiten einsehen, die in Einheiten (Fertigkeitsbereiche), Elemente (erforderliche spezifische Kenntnisse) und Leistungskriterien (Fähigkeiten des Lernenden, die in der Schulung erreicht wurden) gruppiert sind. Testfragen wurden nach Leistungskriterien entworfen und der Test wird mit einem Zufallsgenerator pro Element generiert.

Abbildung 2: Hauptseite des Skills-Baums

Wählen Sie zuerst eine Job-Rolle aus, dann werden die Einheiten angezeigt. Wählen Sie dann eine Einheit aus und die Elemente werden angezeigt. Und schließlich wählen Sie ein Element aus und die Leistungskriterien werden angezeigt.

Abbildung 3: Kompetenzbaum nach Auswahl einer Jobrolle und Auswahl eines Elements

Prüfungsanmeldung oder Login

Login: Wenn Sie sich bereits für diese oder eine andere Berufsrollenprüfung im ISCN-Prüfungssystem angemeldet haben und an einer Prüfung teilnehmen möchten, kennen Sie bereits Ihre Zugangsdaten und können sich anmelden. Registrieren Sie sich in diesem Fall nicht erneut, da das System Ihnen

wieder ein separates Benutzerkonto erstellt.

Abbildung 4: Anmelden

Abbildung 5: Teilnehmer-Login

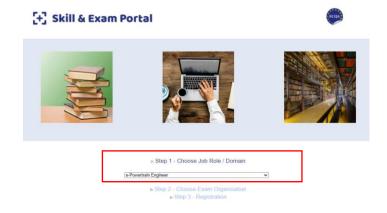
Registrieren: Wenn Sie sich für eine neue Jobrolle und Prüfung anmelden möchten (auch wenn Sie bereits ein Konto für eine andere Jobrolle haben), wählen Sie REGISTRIEREN. Registrieren führt Sie durch eine Reihe von Dialogen zur Auswahl der Jobrolle, zur Auswahl der Prüfungsorganisation und zur Eingabe weiterer Details, die erforderlich sind, um am Ende ein Prüfungsergebnis und ein Zertifikat auszustellen.

Since 2001 the examination service has been used in more than 24 countries, more than 10000 participants have used this portal to perform exams and 7800 certificates have been issued.

Login Register

Impressum | Contact

Copyright © 2021 ISCN - All Rights Reserved


Abbildung 6: Registrieren

Schritte zur Registrierung

- 1. Rufen Sie REGISTER auf (Abbildung 6)
- 2. Schritt 1: Job-Rolle/Domäne auswählen (Abbildung 6)
- 3. Schritt 2 Prüfungsorganisation auswählen (Abbildung 7)
- 4. Schritt 3 Registrierung (Abbildung 8)

Impressum | Contact Copyright © 2021 ISCN - All Rights Reserve

Abbildung 7: Schritt 1: Jobrolle / Domäne auswählen

Impressum | Contact Copyright © 2021 ISCN - All Rights R

Abbildung 8: Schritt 2 – Prüfungsorganisation auswählen

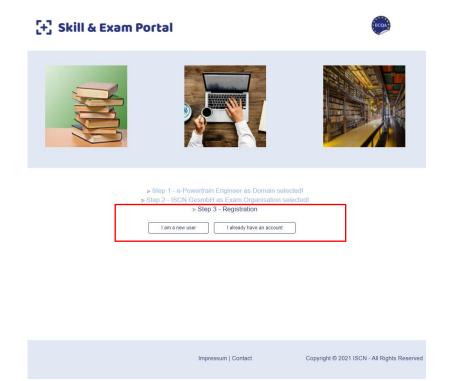


Abbildung 9: Schritt 3 - Registrierung

Ich bin ein neuer Benutzer. Wenn Sie zum ersten Mal ein Konto für eine Jobrolle im Prüfungssystem erstellen, müssen Sie Ihre persönlichen Daten eingeben. Zur Ausstellung eines Zertifikats (nach den Richtlinien der Standards für die Personenzertifizierung (z. B. ISO 17024) können Zertifikate nur an identifizierbare Personen ausgestellt werden (siehe Abbildung 9).

Ich habe bereits einen Account. Wenn Sie bereits ein Konto aus einer früheren Prüfung haben oder sich zu einem früheren Zeitpunkt für eine andere Stelle registriert haben, können Sie die Anmeldedaten Ihres Kontos verwenden. Auf diese Weise wird die neue Jobrolle und Prüfung auch mit dem bereits bestehenden Konto verknüpft (siehe Abbildung 10).

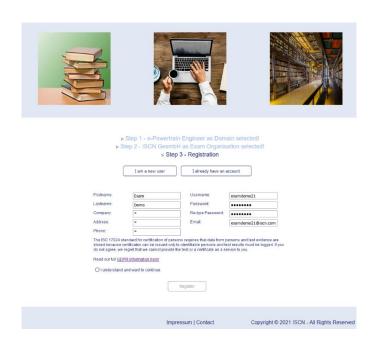


Abbildung 10: Dateneingabe bei "Ich bin ein neuer Benutzer" und REGISTRIEREN

Abbildung 11: Eingabe von Daten bei "Ich habe bereits ein Konto" und REGISTRIEREN Wenn Sie REGISTRIEREN wählen, öffnet sich Ihr persönliches Skills-Konto mit Skills-Browsing-Funktion.

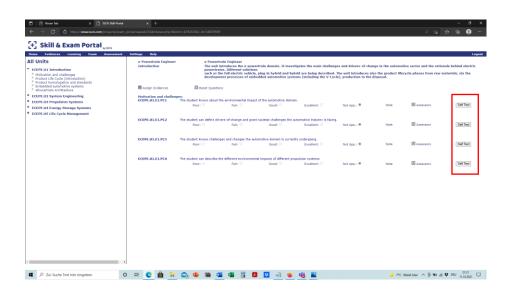


Abbildung 12: Ihr privates Skills-Konto im Prüfungsportal

Achtung: Wenn Sie sich abmelden und später zur Prüfung oder zum Durchsuchen weiterer Fähigkeiten zurückkehren, müssen Sie sich nur anmelden (Abbildung 3).

5.2.2 EUROSPI – ECEPE-SELBSTBEWERTUNGSSYSTEM

Selbsteinschätzung. Nachdem Sie mit der Skills-Browsing-Funktion auf Ihr Skills-Konto zugegriffen haben, können Sie ein bestimmtes Element öffnen und die Liste der Leistungskriterien für das Element anzeigen (Abbildung 12).

Neben jedem Leistungskriterium sehen Sie eine Schaltfläche SELBSTTEST. Wenn Sie den SELBSTTEST öffnen, wird eine Reihe von Multiple-Choice-Fragen angeboten (Abbildung 13).

Fragen mit mehreren Antworten. Jede Multiple-Choice-Frage kann eine oder mehrere richtige Antworten haben. Wenn eine Multiple-Choice-Frage n Antworten hat, von denen m < n Antworten richtig sind, dann ist jede richtige Antwort 1/m wert. Wenn Sie alle richtigen Antworten finden, erhalten Sie m * 1/m = 1 Punkt. Wenn Sie eine falsche Antwort ankreuzen, verlieren Sie alle Punkte dieser Frage und erhalten 0 Punkte.

Das Selbstbewertungstool berechnet automatisch die Punktzahlen aller Multiple-Choice-Fragen eines bestimmten Leistungskriteriums und legt eine Bewertung von schlecht (0 %), ausreichend (33 %), gut (66 %), ausgezeichnet (100 %) für die Leistungskriterien fest (Abbildung 14).

Abbildung 13: SELBSTTEST – Multiple Choice für ein Leistungskriterium

Abbildung 14: SELBSTTEST – Multiple Choice für ein Leistungskriterium

Setzen Sie die Selbsteinschätzung zurück. Wenn Sie eine Antwort auswählen, wird die Antwort gesperrt. Sie können den Selbsttest zurücksetzen und wiederholen, indem Sie mit jeder Multiple-Choice-Frage den gesamten Selbsttest zurücksetzen (Abbildung 14).

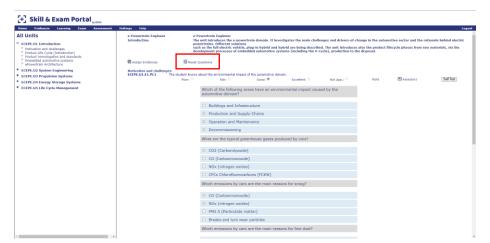


Abbildung 15: SELBSTTEST zurücksetzen

Kompetenzprofil pro Element. Ihre Leistungen im Selbsttest können in Form eines Kompetenzprofils pro Element angezeigt werden. Die Bewertungen der Leistungskriterien werden zu einer Bewertung eines Kompetenzelements aggregiert. Sie haben das Element bestanden, wenn Sie mindestens 67 % erreicht haben.

Abbildung 16: Hauptmenü BEWERTUNGEN - ERGEBNISSE

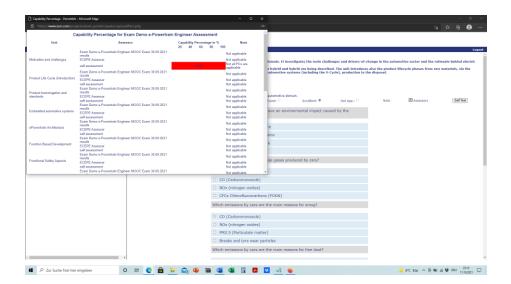


Abbildung 17: FÄHIGKEITSPROFIL – Selbsteinschätzung

Zur Vorbereitung auf die Prüfung sollten Sie den Selbsttest wiederholen, bis Sie in jedem der Kompetenzelemente mindestens 67 % erreicht haben.

5.2.3 EUROSPI – ECEPE PRÜFUNGSSYSTEM

Eröffnung der Prüfung. Prüfungen werden vom Prüfungsamt eröffnet. Erst nachdem die Klausur geöffnet wurde, kann der Studierende die Klausur einsehen. Um die Prüfung zu öffnen, verwenden Sie das Hauptmenü PRÜFUNG und wählen Sie AUSFÜHREN.

Abbildung 17: Prüfung öffnen

Prüfungsleistung. Prüfungen werden zufällig generiert, dh jeder Teilnehmer bekommt aus einem Pool von Prüfungsfragen ein anderes Set an Prüfungsfragen generiert. Der Schüler kann die Multiple-Choice-Fragen beantworten. Jeder Antwortklick wird gespeichert. Sie können Ihre Auswahl korrigieren, solange die Prüfung geöffnet ist.

Wenn Sie eine schlechte Verbindung haben und während der Prüfung die Verbindung verlieren und sich erneut verbinden und anmelden, ist die Prüfung weiterhin verfügbar und alle Antworten wurden gespeichert. Die Software überprüft, ob Sie verbunden sind, und zeigt eine Warnung an, wenn die Ergebnisse aufgrund von Verbindungsproblemen mit dem Server nicht gespeichert wurden.

Abbildung 18: Starten der Prüfung

Sobald Sie begonnen haben, sehen Sie Ihren Test und haben eine festgelegte Anzahl von Minuten (normalerweise 90 Minuten) Zeit, um die Fragen zu beantworten.

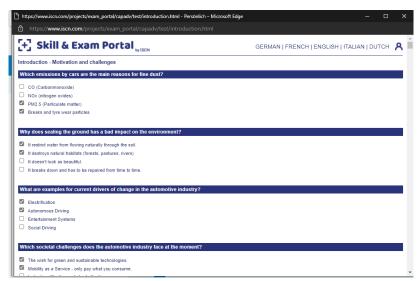


Abbildung 19: Beantwortung der Fragen

Fragen mit mehreren Antworten. Jede Multiple-Choice-Frage kann eine oder mehrere richtige Antworten haben. Wenn eine Multiple-Choice-Frage n Antworten hat, von denen m < n Antworten richtig sind, dann ist jede richtige Antwort 1/m wert. Wenn Sie alle richtigen Antworten finden, erhalten Sie m * 1/m = 1 Punkt. Wenn Sie eine falsche Antwort ankreuzen, verlieren Sie alle Punkte dieser Frage und erhalten 0 Punkte.

Die Multiple-Choice-Fragen sind Elementen zugeordnet und für jedes Element müssen 67 % der Pints erreicht werden.

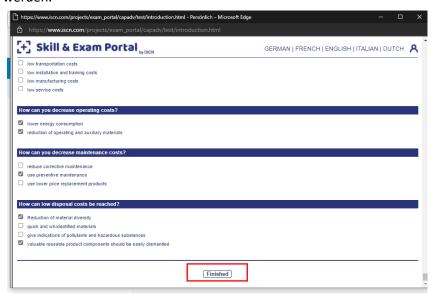


Abbildung 20: Beenden der Prüfung

Abschluss der Prüfung. Erst wenn die Prüfungsorganisation die Prüfung schließt, werden Ihre Ergebnisse nicht mehr gespeichert. Solange die Prüfungsorganisation die Prüfung nicht geschlossen hat, können Sie sich trotzdem anmelden und die Prüfung selbst fortsetzen.

Nachdem die Prüfungsorganisation die Prüfung geschlossen hat, können Sie Ihre Ergebnisse einsehen.

Abbildung 16: Untersuchungsergebnisse

5.3 EUROSPI-SKILLS-DEFINITIONSMODELL

Das EuroSPI-Skills-Definitionsmodell, das für die Job-Rollen-Definition verwendet wird, wird in Kapitel 2 dieses Dokuments beschrieben.

Dieses Modell hat auch eine Abbildung auf das EQF-Modell und das ESCO-Modell, das in einem EU-Blueprint-Projekt DRIVES erstellt wurde.

5.3.1 EUROSPI – ZERTIFIKATSTYPEN

Im Regelfall werden Test- und Prüfungsverfahren für Zertifikatsstufen angeboten:

- Testat
 - Wird nach Kursbesuch von der Ausbildungsstelle erhalten, wenn keine Prüfung durchgeführt wird
- Kurs- / Testzertifikat
 - o Test in einem Testsystem (Europäischer Pool von Testfragen)
 - 67 % Zufriedenheit pro Element
 - Erhalten von der EuroSPI Certificates and Services GmbH
- Zertifikatserneuerung alle 2 Jahre
 - Die Teilnehmer besuchen einen Update-Kurs
 - o Die Teilnehmer führen eine Pflichtübung durch
 - Erhalten von der EuroSPI Certificates and Services GmbH

Die Zertifikate zeigen angerechnete Elemente im Vergleich zu allen geforderten.

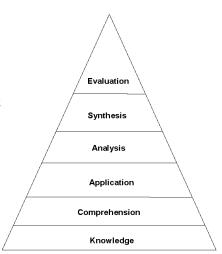
6 ANHANG B EUROSPI-ABDECKUNG VON QUALIFIKATIONSSCHEMATA

6.1.1 ZUORDNUNG BASIEREND AUF NVQ-QUALIFIKATIONSSTUFEN

Qualifikations-/Ausbildungsniveaus: Fünf Qualifikations-/Ausbildungsniveaus sind durch die europäische Gesetzgebung definiert und diese Struktur kann zur Vergleichbarkeit von Berufsqualifikationen aus den verschiedenen europäischen Ländern verwendet werden.

- Stufe 1: angelernter Assistent, der einfache Arbeiten ausführt
- Stufe 2: einfacher Mitarbeiter, der komplexe Routinen und Standardverfahren durchführt
- Stufe 3: Fachkraft mit Verantwortung für andere und eigenständiger Umsetzung von Verfahren
- Level 4: Mittleres Management & Spezialist mit taktischem und strategischem Denken
- Level 5: Berufs- / Universitätsniveau

In den meisten Fällen kann die gleiche Jobrolle auf verschiedenen Ebenen angeboten werden. zB IT-Sicherheitsmanager Grundstufe (NVQ Stufe 2), IT-Sicherheitsmanager Fortgeschrittene Stufe (NVQ Stufe 3) und IT-Sicherheitsmanager Expertenstufe (NVQ Stufen 4 und 5).



6.1.2 KARTIERUNG BASIEREND AUF DEN LERNSTUFEN DES EUROPÄISCHEN QUALIFIKATIONSRAHMENS (EQF).

• Six level taxonomy:

Level 0: I never heard of it

- 1. Knowledge (I can define it):
- 2. Comprehension (I can explain how it works)
- 3. Application (I have limited experience using it in simple situations)
- 4. Analysis (I have extensive experience using it in complex situations)
- 5. Synthesis (I can adapt it to other uses)
- 6. Evaluation (I am recognized as an expert by my peers)

Abbildung 3 Blooms-Lernstufen

Stufe	Wissen	Beispiel
Level 1	Grundlegendes Allgemeinwissen	
Level 2	Grundlegendes Sachwissen zu einem Arbeits- oder Studienfach	
Stufe	Kenntnis von Fakten, Prinzipien, Prozessen und allgemeinen Konzepten in	Gelber Six-
3	einem Arbeits- oder Studienbereich	Sigma-Gürtel
Level	Sach- und Theoriewissen in breiten Zusammenhängen innerhalb eines	
4	Arbeits- oder Studienfeldes	
Level	Umfassendes fachliches, sachliches und theoretisches Wissen in einem	
5	Arbeits- oder Studienbereich und Kenntnis der Grenzen dieses Wissens	
Stufe	Fortgeschrittene Kenntnisse in einem Arbeits- oder Studienbereich, die	Six-Sigma-
6	ein kritisches Verständnis von Theorien und Prinzipien beinhalten	Greenbelt
Stufe 7	 Hochspezialisiertes Wissen, von dem einige an der Spitze des Wissens in einem Arbeits- oder Studienbereich stehen, als Grundlage für originelles Denken und/oder Forschen Kritisches Bewusstsein für Wissensfragen in einem Fachgebiet und an der Schnittstelle zwischen verschiedenen Fachgebieten 	Six-Sigma- Schwarzgurt

Stufe	Wissen an der fortschrittlichsten Grenze eines Arbeits- oder	Six-Sigma-
8	Studienbereichs und an der Schnittstelle zwischen Bereichen	Master Black
	Stadicinger ciens and an der Schmittstelle Zwischen Bereichen	Belt

Abbildung 4 EQR-Lernniveaus

7 ANHANG C EUROSPI RECHTLICHER HINTERGRUND FÜR DIE ZERTIFIZIERUNG

7.1.1 ISO/IEC 17024-STANDARD FÜR PERSONALZERTIFIZIERUNGSPROGRAMME

Die Norm ISO/IEC 17024 beschreibt Standardprozesse zur Prüfung und Zertifizierung von Personen. Einige der beschriebenen Grundprinzipien umfassen:

- Standard Prüfungsverfahren
- Standardzertifizierungsverfahren
- Identifizierung der Personen, die das Zertifikat erhalten
- Unabhängigkeit von Prüfer und Trainer
- Zertifizierungssystem, das es ermöglicht, die Prüfung zu protokollieren, um eine Aufzeichnung/einen Nachweis darüber zu führen, dass der Prüfling die Prüfung bestanden hat
- Abbildung der Prozesse nach ISO 17024

7.1.2 EUROSPI UND ISO/IEC 17024-STANDARD

- In Kapitel 5 sehen Sie ein Standard-Prüfungssystem mit einem Standard-Workflow und angewendeten Standard-Testprozessen
- Bei der Entwicklung dieser Standards wurde die Richtlinie ISO 17024 als Referenzmodell verwendet
- EuroSPI hat eine Abbildung auf die Norm ISO 17024 erstellt und in Form einer Selbsterklärung veröffentlicht.

7.1.3 VERBINDUNG MIT INSTITUTIONEN

EuroSPI hat eine Zusammenarbeit mit nationalen Universitäten aufgebaut, die Berufsrollen mit ECTS lehren. Die gleichen Berufsbilder werden mit ECVET auf dem Markt von Ausbildungseinrichtungen angeboten.

Die Berufsrolle der ECEPE wurde in bestehende Lehrveranstaltungen an der TU Graz, der TU Ostrava und der EuroSPI-Akademie integriert, die sich Industrie und Universitäten teilen und die von der ASA (Automotive Skills Alliance) unterstützt / kooperiert wird.

8 ANNEX D ZERTIFIZIERUNGSREFERENZEN

- [1] CREDIT Project, Accreditation Model Definition, MM 1032 Project CREDIT, Version 2.0, University of Amsterdam, 15.2.99
- [2] DTI Department of Trade and Industry UK, **British Standards for Occupational Qualification**,

 National Vocational Qualification Standards and Levels
- [3] R. Messnarz, et. al, *Assessment Based Learning centers*, in : Proceedings of the EuroSPI 2006 Conference, Joensuu, Finland, Oct 2006, also published in Wiley SPIP Proceeding in June 2007
- [4] Richard Messnarz, Damjan Ekert, Michael Reiner, Gearoid O'Suilleabhain, *Human resources*based improvement strategies the learning factor (p 355-362), Volume 13 Issue 4, Pages
 297 382 (July/August 2008), Wiley SPIP Journal, 2008
- [5] European Certification and Qualification Association, *ECQA Guide*, Version 3, 2009, www.ecqa.org, Guidelines
- [6] Richard Messnarz, Damjan Ekert, Michael Reiner, Europe wide Industry Certification Using Standard Procedures based on ISO 17024, in: Proceedings of the TAEE 2012 Conference, IEEE Computer Society Press, June 2012
- [7] The European Skills/Competences, qualifications and Occupations (ESCO), https://ec.europa.eu/esco/portal/home
- [8] The European Qualifications Framework (EQF), https://www.cedefop.europa.eu/en/events-and-projects/projects/european-qualifications-framework-eqf
- [9] European Credit Transfer and Accumulation System (ECTS), https://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects en
- [10] The European Credit system for Vocational Education and Training (ECVET),

 https://ec.europa.eu/education/resources-and-tools/the-european-credit-system-for-vocational-education-and-training-ecvet en